skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramirez, A P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In geometrically frustrated (GF) magnets, conventional long-range order is suppressed due to the presence of primitive triangular structural units, and the nature of the ensuing ground state remains elusive. One class of candidate states, extensively sought in experiments and vigorously studied theoretically, is the quantum spin liquid (QSL), a magnetically disordered state in which all spinsparticipate in a quantum-coherent many-body state. Randomly located impurities, present in all materials, may prevent QSL formation and instead lead to the formation of a spin-glass state. In this article, we review available data on the specific heat, magnetic susceptibility, and neutron scattering in GF materials. Such data show that a pure GF magnet possesses a characteristic ‘‘hidden energy scale’’ significantly exceeded by the other microscopic energy scales in the material. When cooled down to a temperature below the hidden energy scale, a GF material develops significant short-range order that dominates its properties and, in particular, dictates the spin-glass transition temperature for experimentally accessible impurity densities. We review the manifestations of short-range order in the commonly observed thermodynamic quantities in GF materials, possible scenarios for the hidden energy scale, and related open questions. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  2. null (Ed.)
  3. Gamma-ray detection following the inelastic neutron scattering reaction on isotopically enriched material was used to study the nuclear structure of 74 Ge. From these measurements, low-lying, low-spin excited states were characterized, new states and their decays were identified, level lifetimes were measured with the Doppler-shift attenuation method (DSAM), multipole mixing ratios were established, and transition probabilities were determined. New structural features in 74 Ge were identified, and the reanalysis of older 76 Ge data led to the placement of the 2 + member of the intruder band. In addition, a number of previously placed states in 74 Ge were shown not to exist. A procedure for future work, which will lead to meaningful data for constraining calculations of the neutrinoless double-beta decay matrix element, is suggested. 
    more » « less